Let I=(0,1] be the unit interval of the real line. For a given number a∈(0,1) we define a map T:I→I by the formula
if
T (x, y) = \begin{cases} x + (1 - a),&\mbox{ if } 0< x \leq a,\\ \text{ } \\ x - a, & \mbox{ if } a < x \leq 1.\end{cases} Show that for every interval J⊂I there exists an integer n>0 such that Tn(J)∩J=∅. floor functionfunctionalgebraIterationintervalIMO Shortlist