MathDB
Problems
Contests
International Contests
IMO Shortlist
1979 IMO Shortlist
20
20
Part of
1979 IMO Shortlist
Problems
(1)
Find maximum of the sum
Source:
9/15/2010
Given the integer
n
>
1
n > 1
n
>
1
and the real number
a
>
0
a > 0
a
>
0
determine the maximum of
∑
i
=
1
n
−
1
x
i
x
i
+
1
\sum_{i=1}^{n-1} x_i x_{i+1}
∑
i
=
1
n
−
1
x
i
x
i
+
1
taken over all nonnegative numbers
x
i
x_i
x
i
with sum
a
.
a.
a
.
algebra
maximization
optimization
lagrange
calculus
IMO Shortlist
IMO Longlist