Let p be the product of two consecutive integers greater than 2. Show that there are no integers x1,x2,…,xp satisfying the equation
\sum^p_{i \equal{} 1} x^2_i \minus{} \frac {4}{4 \cdot p \plus{} 1} \left( \sum^p_{i \equal{} 1} x_i \right)^2 \equal{} 1
OR
Show that there are only two values of p for which there are integers x1,x2,…,xp satisfying
\sum^p_{i \equal{} 1} x^2_i \minus{} \frac {4}{4 \cdot p \plus{} 1} \left( \sum^p_{i \equal{} 1} x_i \right)^2 \equal{} 1
number theoryrelatively primequadraticsIMO Shortlistequation