Let a, b, c, d,m, n \in \mathbb{Z}^\plus{} such that a^2\plus{}b^2\plus{}c^2\plus{}d^2 \equal{} 1989,
a\plus{}b\plus{}c\plus{}d \equal{} m^2, and the largest of a,b,c,d is n2. Determine, with proof, the values of m and n. number theorysystem of equationsDiophantine equationAdditive Number TheoryIMO Shortlist