MathDB
Problems
Contests
International Contests
IMO Shortlist
1991 IMO Shortlist
11
11
Part of
1991 IMO Shortlist
Problems
(1)
combinatorial sum
Source: IMO ShortList 1991, Problem 11 (AUS 4)
4/26/2005
Prove that \sum_{k \equal{} 0}^{995} \frac {( \minus{} 1)^k}{1991 \minus{} k} {1991 \minus{} k \choose k} \equal{} \frac {1}{1991}
combinatorics
series summation
binomial coefficients
Summation
Combinatorial Identity
IMO Shortlist