MathDB
Problems
Contests
International Contests
IMO Shortlist
1991 IMO Shortlist
27
27
Part of
1991 IMO Shortlist
Problems
(1)
Maximum value of x_i*x_j* (x_i + x_j) summed over all i
Source: IMO ShortList 1991, Problem 27 (POL 2)
8/15/2008
Determine the maximum value of the sum \sum_{i < j} x_ix_j (x_i \plus{} x_j) over all n \minus{}tuples
(
x
1
,
…
,
x
n
)
,
(x_1, \ldots, x_n),
(
x
1
,
…
,
x
n
)
,
satisfying
x
i
≥
0
x_i \geq 0
x
i
≥
0
and \sum^n_{i \equal{} 1} x_i \equal{} 1.
inequalities
IMO Shortlist
maximum value
maximization