MathDB

Problems(3)

2p pairwise distinct subsets s.t. intersection non-empty

Source: IMO Shortlist 2007, C7

7/13/2008
Let \alpha < \frac {3 \minus{} \sqrt {5}}{2} be a positive real number. Prove that there exist positive integers n n and p>α2n p > \alpha \cdot 2^n for which one can select 2p 2 \cdot p pairwise distinct subsets S1,,Sp,T1,,Tp S_1, \ldots, S_p, T_1, \ldots, T_p of the set {1,2,,n} \{1,2, \ldots, n\} such that SiTj S_i \cap T_j \neq \emptyset for all 1i,jp 1 \leq i,j \leq p Author: Gerhard Wöginger, Austria
combinatoricsSet systemsExtremal combinatoricsIMO Shortlist
circumradius, incenter, ...

Source: IMO Shortlist 2007, G7

7/6/2008
Given an acute triangle ABC ABC with B>C \angle B > \angle C. Point I I is the incenter, and R R the circumradius. Point D D is the foot of the altitude from vertex A A. Point K K lies on line AD AD such that AK \equal{} 2R, and D D separates A A and K K. Lines DI DI and KI KI meet sides AC AC and BC BC at E,F E,F respectively. Let IE \equal{} IF. Prove that B3C \angle B\leq 3\angle C. Author: Davoud Vakili, Iran
geometrycircumcircleincenterreflectionIMO Shortlist
Prime factorisation of n!

Source: ISL 2007 N7

7/13/2008
For a prime p p and a given integer n n let νp(n) \nu_p(n) denote the exponent of p p in the prime factorisation of n! n!. Given dN d \in \mathbb{N} and {p1,p2,,pk} \{p_1,p_2,\ldots,p_k\} a set of k k primes, show that there are infinitely many positive integers n n such that dνpi(n) d\mid \nu_{p_i}(n) for all 1ik 1 \leq i \leq k.
Author: Tejaswi Navilarekkallu, India
modular arithmeticnumber theoryprime factorizationfactorialIMO ShortlistCombinatorial Number Theory