MathDB
Problems
Contests
International Contests
IMO Shortlist
2015 IMO Shortlist
A3
A3
Part of
2015 IMO Shortlist
Problems
(1)
Maximize multilinear sum
Source: 2015 ISL A3
7/7/2016
Let
n
n
n
be a fixed positive integer. Find the maximum possible value of
∑
1
≤
r
<
s
≤
2
n
(
s
−
r
−
n
)
x
r
x
s
,
\sum_{1 \le r < s \le 2n} (s-r-n)x_rx_s,
1
≤
r
<
s
≤
2
n
∑
(
s
−
r
−
n
)
x
r
x
s
,
where
−
1
≤
x
i
≤
1
-1 \le x_i \le 1
−
1
≤
x
i
≤
1
for all
i
=
1
,
⋯
,
2
n
i = 1, \cdots , 2n
i
=
1
,
⋯
,
2
n
.
inequalities
algebra
IMO Shortlist
multivariate polynomial
maximization
n-variable inequality