MathDB
Problems
Contests
International Contests
IMO Shortlist
2015 IMO Shortlist
N3
N3
Part of
2015 IMO Shortlist
Problems
(1)
x_1x_2...x_(n+1)-1 is divisible by an odd prime
Source: 2015 IMO Shortlist N3
7/7/2016
Let
m
m
m
and
n
n
n
be positive integers such that
m
>
n
m>n
m
>
n
. Define
x
k
=
m
+
k
n
+
k
x_k=\frac{m+k}{n+k}
x
k
=
n
+
k
m
+
k
for
k
=
1
,
2
,
…
,
n
+
1
k=1,2,\ldots,n+1
k
=
1
,
2
,
…
,
n
+
1
. Prove that if all the numbers
x
1
,
x
2
,
…
,
x
n
+
1
x_1,x_2,\ldots,x_{n+1}
x
1
,
x
2
,
…
,
x
n
+
1
are integers, then
x
1
x
2
…
x
n
+
1
−
1
x_1x_2\ldots x_{n+1}-1
x
1
x
2
…
x
n
+
1
−
1
is divisible by an odd prime.
IMO Shortlist
number theory
Divisibility