MathDB
Problems
Contests
International Contests
IMO Shortlist
2017 IMO Shortlist
A7
A7
Part of
2017 IMO Shortlist
Problems
(1)
Inequality on sequence of integers
Source: IMO Shortlist 2017 A7
7/10/2018
Let
a
0
,
a
1
,
a
2
,
…
a_0,a_1,a_2,\ldots
a
0
,
a
1
,
a
2
,
…
be a sequence of integers and
b
0
,
b
1
,
b
2
,
…
b_0,b_1,b_2,\ldots
b
0
,
b
1
,
b
2
,
…
be a sequence of positive integers such that
a
0
=
0
,
a
1
=
1
a_0=0,a_1=1
a
0
=
0
,
a
1
=
1
, and
a
n
+
1
=
{
a
n
b
n
+
a
n
−
1
if
b
n
−
1
=
1
a
n
b
n
−
a
n
−
1
if
b
n
−
1
>
1
for
n
=
1
,
2
,
…
.
a_{n+1} = \begin{cases} a_nb_n+a_{n-1} & \text{if $b_{n-1}=1$} \\ a_nb_n-a_{n-1} & \text{if $b_{n-1}>1$} \end{cases}\qquad\text{for }n=1,2,\ldots.
a
n
+
1
=
{
a
n
b
n
+
a
n
−
1
a
n
b
n
−
a
n
−
1
if
b
n
−
1
=
1
if
b
n
−
1
>
1
for
n
=
1
,
2
,
…
.
for
n
=
1
,
2
,
…
.
n=1,2,\ldots.
n
=
1
,
2
,
…
.
Prove that at least one of the two numbers
a
2017
a_{2017}
a
2017
and
a
2018
a_{2018}
a
2018
must be greater than or equal to
2017
2017
2017
.
IMO Shortlist