MathDB
Problems
Contests
International Contests
IMO Shortlist
2022 IMO Shortlist
A4
A4
Part of
2022 IMO Shortlist
Problems
(1)
Inequality on pairs of variables in [0,1]
Source: ISL 2022 A4
7/9/2023
Let
n
⩾
3
n \geqslant 3
n
⩾
3
be an integer, and let
x
1
,
x
2
,
…
,
x
n
x_1,x_2,\ldots,x_n
x
1
,
x
2
,
…
,
x
n
be real numbers in the interval
[
0
,
1
]
[0,1]
[
0
,
1
]
. Let
s
=
x
1
+
x
2
+
…
+
x
n
s=x_1+x_2+\ldots+x_n
s
=
x
1
+
x
2
+
…
+
x
n
, and assume that
s
⩾
3
s \geqslant 3
s
⩾
3
. Prove that there exist integers
i
i
i
and
j
j
j
with
1
⩽
i
<
j
⩽
n
1 \leqslant i<j \leqslant n
1
⩽
i
<
j
⩽
n
such that
2
j
−
i
x
i
x
j
>
2
s
−
3
.
2^{j-i}x_ix_j>2^{s-3}.
2
j
−
i
x
i
x
j
>
2
s
−
3
.
inequalities
algebra