MathDB
Problems
Contests
International Contests
IMO Shortlist
2022 IMO Shortlist
A6
A6
Part of
2022 IMO Shortlist
Problems
(1)
Pathological FE
Source: ISL 2022 A6
7/9/2023
Let
R
\mathbb R
R
be the set of real numbers. We denote by
F
\mathcal F
F
the set of all functions
f
:
R
→
R
f\colon\mathbb R\to\mathbb R
f
:
R
→
R
such that
f
(
x
+
f
(
y
)
)
=
f
(
x
)
+
f
(
y
)
f(x + f(y)) = f(x) + f(y)
f
(
x
+
f
(
y
))
=
f
(
x
)
+
f
(
y
)
for every
x
,
y
∈
R
x,y\in\mathbb R
x
,
y
∈
R
Find all rational numbers
q
q
q
such that for every function
f
∈
F
f\in\mathcal F
f
∈
F
, there exists some
z
∈
R
z\in\mathbb R
z
∈
R
satisfying
f
(
z
)
=
q
z
f(z)=qz
f
(
z
)
=
q
z
.