MathDB
Problems
Contests
International Contests
IMO Shortlist
2022 IMO Shortlist
A7
A7
Part of
2022 IMO Shortlist
Problems
(1)
Digit sums of polynomial outputs
Source: ISL 2022 A7
7/9/2023
For a positive integer
n
n
n
we denote by
s
(
n
)
s(n)
s
(
n
)
the sum of the digits of
n
n
n
. Let
P
(
x
)
=
x
n
+
a
n
−
1
x
n
−
1
+
⋯
+
a
1
x
+
a
0
P(x)=x^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0
P
(
x
)
=
x
n
+
a
n
−
1
x
n
−
1
+
⋯
+
a
1
x
+
a
0
be a polynomial, where
n
⩾
2
n \geqslant 2
n
⩾
2
and
a
i
a_i
a
i
is a positive integer for all
0
⩽
i
⩽
n
−
1
0 \leqslant i \leqslant n-1
0
⩽
i
⩽
n
−
1
. Could it be the case that, for all positive integers
k
k
k
,
s
(
k
)
s(k)
s
(
k
)
and
s
(
P
(
k
)
)
s(P(k))
s
(
P
(
k
))
have the same parity?
algebra
polynomial