MathDB
Problems
Contests
International Contests
IMO Shortlist
2022 IMO Shortlist
C5
C5
Part of
2022 IMO Shortlist
Problems
(1)
Number of functions satisfying sum inequality
Source: ISL 2022 C5
7/9/2023
Let
m
,
n
⩾
2
m,n \geqslant 2
m
,
n
⩾
2
be integers, let
X
X
X
be a set with
n
n
n
elements, and let
X
1
,
X
2
,
…
,
X
m
X_1,X_2,\ldots,X_m
X
1
,
X
2
,
…
,
X
m
be pairwise distinct non-empty, not necessary disjoint subset of
X
X
X
. A function
f
:
X
→
{
1
,
2
,
…
,
n
+
1
}
f \colon X \to \{1,2,\ldots,n+1\}
f
:
X
→
{
1
,
2
,
…
,
n
+
1
}
is called nice if there exists an index
k
k
k
such that \sum_{x \in X_k} f(x)>\sum_{x \in X_i} f(x) \text{for all } i \ne k. Prove that the number of nice functions is at least
n
n
n^n
n
n
.
function
combinatorics