Problems(2)
Pretty simple diophantine equation, ZIMO-09
Source: International Zhautykov Olympiad 2009, day 1, problem 1
1/17/2009
Find all pairs of integers , such that
x^2 \minus{} 2009y \plus{} 2y^2 \equal{} 0
quadraticsalgebranumber theory proposednumber theory
Four concyclic points on each of two parabola's, ZIMO - 09
Source: International Zhautykov Olympiad 2009, day 2, problem 4.
1/17/2009
On the plane, a Cartesian coordinate system is chosen. Given points on the parabola y \equal{} x^2, and points on the parabola y \equal{} 2009x^2. Points are concyclic, and points and have equal abscissas for each i \equal{} 1,2,3,4.
Prove that points are also concyclic.
analytic geometryconicsparabolaalgebrapolynomialVietafunction