MathDB
Problems
Contests
International Contests
International Zhautykov Olympiad
2021 International Zhautykov Olympiad
4
4
Part of
2021 International Zhautykov Olympiad
Problems
(1)
IZHO P4 (Day 2, Problem 1)
Source: IZHO 2021
1/9/2021
Let there be an incircle of triangle
A
B
C
ABC
A
BC
, and 3 circles each inscribed between incircle and angles of
A
B
C
ABC
A
BC
. Let
r
,
r
1
,
r
2
,
r
3
r, r_1, r_2, r_3
r
,
r
1
,
r
2
,
r
3
be radii of these circles (
r
1
,
r
2
,
r
3
<
r
r_1, r_2, r_3 < r
r
1
,
r
2
,
r
3
<
r
). Prove that
r
1
+
r
2
+
r
3
≥
r
r_1+r_2+r_3 \geq r
r
1
+
r
2
+
r
3
≥
r
IZHO 2021
izho
geometric inequality
geometry
inequalities