Let k>1,n>2018 be positive integers, and let n be odd. The nonzero rational numbers x1,x2,…,xn are not all equal and satisfy x1+x2k=x2+x3k=x3+x4k=…=xn−1+xnk=xn+x1k
Find:
a) the product x1x2…xn as a function of k and n
b) the least value of k, such that there exist n,x1,x2,…,xn satisfying the given conditions. algebraminimumsystem of equationsProduct