MathDB
Problems
Contests
International Contests
Junior Balkan MO
1999 Junior Balkan MO
1
1
Part of
1999 Junior Balkan MO
Problems
(1)
Prove that a + b + c = 0
Source: JBMO 1999, Problem 1
10/30/2005
Let
a
,
b
,
c
,
x
,
y
a,b,c,x,y
a
,
b
,
c
,
x
,
y
be five real numbers such that a^3 \plus{} ax \plus{} y \equal{} 0, b^3 \plus{} bx \plus{} y \equal{} 0 and c^3 \plus{} cx \plus{} y \equal{} 0. If
a
,
b
,
c
a,b,c
a
,
b
,
c
are all distinct numbers prove that their sum is zero. Ciprus
algorithm