For a positive integer n, two payers A and B play the following game: Given a pile of s stones, the players take turn alternatively with A going first. On each turn the player is allowed to take either one stone, or a prime number of stones, or a positive multiple of n stones. The winner is the one who takes the last stone. Assuming both A and B play perfectly, for how many values of s the player A cannot win? floor functionmodular arithmeticlimitlogarithmscombinatorics solvedcombinatorics