MathDB
Problems
Contests
International Contests
KoMaL A Problems
KoMaL A Problems 2018/2019
A. 739
A. 739
Part of
KoMaL A Problems 2018/2019
Problems
(1)
Limit of a_{n_i+n_j}
Source: KöMaL A. 739
1/21/2019
Let
a
1
,
a
2
,
…
a_1,a_2,\dotsc
a
1
,
a
2
,
…
be a sequence of real numbers from the interval
[
0
,
1
]
[0,1]
[
0
,
1
]
. Prove that there is a sequence
1
⩽
n
1
<
n
2
<
…
1\leqslant n_1<n_2<\dotsc
1
⩽
n
1
<
n
2
<
…
of positive integers such that
A
=
lim
i
,
j
→
∞
i
≠
j
a
n
i
+
n
j
A=\lim_{\substack{i,j\to \infty \\ i\neq j}} a_{n_i+n_j}
A
=
i
,
j
→
∞
i
=
j
lim
a
n
i
+
n
j
exists, i.e., for every real number
ϵ
>
0
\epsilon >0
ϵ
>
0
, there is a constant
N
ϵ
N_{\epsilon}
N
ϵ
that
∣
a
n
i
+
n
j
−
A
∣
<
ϵ
|a_{n_i+n_j}-A|<\epsilon
∣
a
n
i
+
n
j
−
A
∣
<
ϵ
is satisfied for any pair of distinct indices
i
,
j
>
N
ϵ
i,j>N_{\epsilon}
i
,
j
>
N
ϵ
.
algebra