MathDB
Problems
Contests
International Contests
KoMaL A Problems
KoMaL A Problems 2021/2022
A. 811
A. 811
Part of
KoMaL A Problems 2021/2022
Problems
(1)
Distinct Intersections
Source: KöMaL A. 811
3/23/2022
Let
A
A
A
be a given set with
n
n
n
elements. Let
k
<
n
k<n
k
<
n
be a given positive integer. Find the maximum value of
m
m
m
for which it is possible to choose sets
B
i
B_i
B
i
and
C
i
C_i
C
i
for
i
=
1
,
2
,
…
,
m
i=1,2,\ldots,m
i
=
1
,
2
,
…
,
m
satisfying the following conditions:[*]
B
i
⊂
A
,
B_i\subset A,
B
i
⊂
A
,
∣
B
i
∣
=
k
,
|B_i|=k,
∣
B
i
∣
=
k
,
[*]
C
i
⊂
B
i
C_i\subset B_i
C
i
⊂
B
i
(there is no additional condition for the number of elements in
C
i
C_i
C
i
), and [*]
B
i
∩
C
j
≠
B
j
∩
C
i
B_i\cap C_j\neq B_j\cap C_i
B
i
∩
C
j
=
B
j
∩
C
i
for all
i
≠
j
.
i\neq j.
i
=
j
.
komal
Sets
combinatorics