MathDB
Problems
Contests
International Contests
KoMaL A Problems
KoMaL A Problems 2021/2022
A. 821
A. 821
Part of
KoMaL A Problems 2021/2022
Problems
(1)
Is it possibile to find a function $f:\mathbb N^2\to\mathbb N$
Source: KoMaL A. 821
4/12/2022
a) Is it possible to find a function
f
:
N
2
→
N
f:\mathbb N^2\to\mathbb N
f
:
N
2
→
N
such that for every function
g
:
N
→
N
g:\mathbb N\to\mathbb N
g
:
N
→
N
and positive integer
M
M
M
there exists
n
∈
N
n\in\mathbb N
n
∈
N
such that set
{
k
∈
N
:
f
(
n
,
k
)
=
g
(
k
)
}
\left\{k\in \mathbb N : f(n,k)=g(k)\right\}
{
k
∈
N
:
f
(
n
,
k
)
=
g
(
k
)
}
has at least
M
M
M
elements? b) Is it possible to find a function
f
:
N
2
→
N
f:\mathbb N^2\to\mathbb N
f
:
N
2
→
N
such that for every function
g
:
N
→
N
g:\mathbb N\to\mathbb N
g
:
N
→
N
there exists
n
∈
N
n\in \mathbb N
n
∈
N
such that set
{
k
∈
N
:
f
(
n
,
k
)
=
g
(
k
)
}
\left\{k\in\mathbb N : f(n,k)=g(k)\right\}
{
k
∈
N
:
f
(
n
,
k
)
=
g
(
k
)
}
has an infinite number of elements?
function
komal
algebra