MathDB
Problems
Contests
International Contests
Mediterranean Mathematics Olympiad
2014 Mediterranean Mathematics Olympiad
1
1
Part of
2014 Mediterranean Mathematics Olympiad
Problems
(1)
Prove that there exists an integer k
Source: MMC 2014 Problem 1
6/8/2014
Let
a
1
,
…
,
a
n
a_1,\ldots,a_n
a
1
,
…
,
a
n
and
b
1
…
,
b
n
b_1\ldots,b_n
b
1
…
,
b
n
be
2
n
2n
2
n
real numbers. Prove that there exists an integer
k
k
k
with
1
≤
k
≤
n
1\le k\le n
1
≤
k
≤
n
such that
∑
i
=
1
n
∣
a
i
−
a
k
∣
≤
∑
i
=
1
n
∣
b
i
−
a
k
∣
.
\sum_{i=1}^n|a_i-a_k| ~~\le~~ \sum_{i=1}^n|b_i-a_k|.
∑
i
=
1
n
∣
a
i
−
a
k
∣
≤
∑
i
=
1
n
∣
b
i
−
a
k
∣.
(Proposed by Gerhard Woeginger, Austria)
induction
inequalities
triangle inequality
algebra
n-variable inequality