Problems(2)
Determine the least possible value of a_(2008)
Source: MEMO 2008, Single, Problem 1
9/10/2008
Let (a_n)^{\infty}_{n\equal{}1} be a sequence of integers with a_{n} < a_{n\plus{}1}, \forall n \geq 1. For all quadruple of indices such that and i \plus{} l \equal{} j \plus{} k we have the inequality a_{i} \plus{} a_{l} > a_{j} \plus{} a_{k}. Determine the least possible value of
inequalitiesalgebra unsolvedalgebra
xf(x + xy) = xf(x) + f(x^2)f(y)
Source: MEMO 2008, Team, Problem 5
9/10/2008
Determine all functions such that
x f(x \plus{} xy) \equal{} x f(x) \plus{} f \left( x^2 \right) f(y) \forall x,y \in \mathbb{R}.
functionalgebra unsolvedalgebra