MathDB
Problems
Contests
International Contests
Middle European Mathematical Olympiad
2009 Middle European Mathematical Olympiad
1
1
Part of
2009 Middle European Mathematical Olympiad
Problems
(1)
f(xf(y)) + f(f(x) + f(y)) = yf(x) + f(x + f(y))
Source: MEMO 2009, problem 1, single competition
10/1/2009
Find all functions
f
:
R
→
R
f: \mathbb{R} \to \mathbb{R}
f
:
R
→
R
, such that f(xf(y)) \plus{} f(f(x) \plus{} f(y)) \equal{} yf(x) \plus{} f(x \plus{} f(y)) holds for all
x
x
x
,
y
∈
R
y \in \mathbb{R}
y
∈
R
, where
R
\mathbb{R}
R
denotes the set of real numbers.
function
algebra proposed
algebra