MathDB
Problems
Contests
International Contests
Nordic
1988 Nordic
2
2
Part of
1988 Nordic
Problems
(1)
(a^3 - c^3)/3 \ge abc [(a- b)/c+ (b- c)/a]
Source: Nordic Mathematical Contest 1988 #2
10/5/2017
Let
a
,
b
,
a, b,
a
,
b
,
and
c
c
c
be non-zero real numbers and let
a
≥
b
≥
c
a \ge b \ge c
a
≥
b
≥
c
. Prove the inequality
a
3
−
c
3
3
≥
a
b
c
(
a
−
b
c
+
b
−
c
a
)
\frac{a^3 - c^3}{3} \ge abc (\frac{a- b}{c}+ \frac{b- c}{a})
3
a
3
−
c
3
≥
ab
c
(
c
a
−
b
+
a
b
−
c
)
. When does equality hold?
inequalities