The real-valued function f is defined for positive integers, and the positive integer a satisfies
f(a)=f(1995),f(a+1)=f(1996),f(a+2)=f(1997),f(n+a)=f(n)+1f(n)−1 for all positive integers n.
(i) Show that f(n+4a)=f(n) for all positive integers n.
(ii) Determine the smallest possible a. algebrafunctional equation in N