MathDB
Problems
Contests
International Contests
Nordic
2003 Nordic
2
2
Part of
2003 Nordic
Problems
(1)
x^3 + y^3 + z^3 − 3xyz = 2003
Source: Nordic Mathematical Contest 2003 #2
9/24/2017
Find all triples of integers
(
x
,
y
,
z
)
{(x, y, z)}
(
x
,
y
,
z
)
satisfying
x
3
+
y
3
+
z
3
ā
3
x
y
z
=
2003
{x^3 + y^3 + z^3 - 3xyz = 2003}
x
3
+
y
3
+
z
3
ā
3
x
yz
=
2003
number theory
cubic equation
integer equation