MathDB
Problems
Contests
International Contests
Rioplatense Mathematical Olympiad, Level 3
2017 Rioplatense Mathematical Olympiad, Level 3
3
3
Part of
2017 Rioplatense Mathematical Olympiad, Level 3
Problems
(1)
m | n^{2016}+n^{2015}+...+n^2+n+1, n |m^{2016}+m^{2015} +...+m^2+m+1
Source: Rioplatense 2017 L3 P3
10/19/2022
Show that there are infinitely many pairs of positive integers
(
m
,
n
)
(m,n)
(
m
,
n
)
, with
m
<
n
m<n
m
<
n
, such that
m
m
m
divides
n
2016
+
n
2015
+
⋯
+
n
2
+
n
+
1
n^{2016}+n^{2015}+\dots+n^2+n+1
n
2016
+
n
2015
+
⋯
+
n
2
+
n
+
1
and
n
n
n
divides
m
2016
+
m
2015
+
⋯
+
m
2
+
m
+
1
m^{2016}+m^{2015} +\dots+m^2+m+1
m
2016
+
m
2015
+
⋯
+
m
2
+
m
+
1
.
number theory
divides