Let P(n) be the number of ways to split a natural number n to the sum of powers of two, when the order does not matter. For example P(5)=4, as 5=4+1=2+2+1=2+1+1+1=1+1+1+1+1. Prove that for any natural the identity P(n)+(−1)a1P(n−1)+(−1)a2P(n−2)+…+(−1)an−1P(1)+(−1)an=0, is true, where ak is the number of units in the binary number record k .[url=http://matol.kz/comments/2720/show]source
binary representationnumber theorypower of 2combinatorics