At each integer point of the numerical line a lamp with a toggle button is placed. If the button is pressed, a lit lamp is turned off, an unlit one is turned on. Initially all the lamps are unlit. A stencil with a finite set of fixed holes at integer distances is chosen. The stencil may be moved along the line as a rigid body, and for any fixed position of the stencil, one may push simultaneously all the buttons accessible through the holes. Prove that for any stencil it is possible to get exactly two lit lamps after several such operations. (B Ginsburg)