MathDB
Problems
Contests
International Contests
Tournament Of Towns
1995 Tournament Of Towns
(452) 1
(452) 1
Part of
1995 Tournament Of Towns
Problems
(1)
TOT 452 1995 Spring S O1 sum 1/|x-a_i| < 40 if 0<a_i<=1
Source:
7/9/2024
Let
a
,
b
,
c
a, b, c
a
,
b
,
c
and
d
d
d
be points of the segment
[
0
,
1
]
[0,1]
[
0
,
1
]
of the real line (this means numbers
x
x
x
such that
0
≤
x
≤
1
0 \le x \le 1
0
≤
x
≤
1
). Prove that there exists a point
x
x
x
on this segment such that
1
∣
x
−
a
∣
+
1
∣
x
−
b
∣
+
1
∣
x
−
c
∣
+
1
∣
x
−
d
∣
<
40.
\frac{1}{|x-a|}+\frac{1}{|x-b|}+\frac{1}{|x-c|}+\frac{1}{|x-d|}< 40.
∣
x
−
a
∣
1
+
∣
x
−
b
∣
1
+
∣
x
−
c
∣
1
+
∣
x
−
d
∣
1
<
40.
(LD Kurliandchik)
algebra
inequalities