MathDB
Problems
Contests
International Contests
Tournament Of Towns
1996 Tournament Of Towns
(519) 2
(519) 2
Part of
1996 Tournament Of Towns
Problems
(1)
b - c/ (n-2)! < sum (n^3-a)/ n! < b
Source: TOT 519 1996 Autumn S A2 Tournament Of Towns
8/16/2024
(a) Prove that
3
−
2
(
n
−
1
)
!
<
2
2
−
2
2
!
+
2
2
−
2
3
!
+
.
.
.
+
n
2
−
2
n
!
<
3
3-\frac{2}{(n-1)!} < \frac{2^2-2}{2!}+\frac{2^2-2}{3!}+...+\frac{n^2-2}{n!}<3
3
−
(
n
−
1
)!
2
<
2
!
2
2
−
2
+
3
!
2
2
−
2
+
...
+
n
!
n
2
−
2
<
3
(b) Find some positive integers
a
a
a
,
b
b
b
and
c
c
c
such that for any
n
>
2
n > 2
n
>
2
,
b
−
c
(
n
−
2
)
!
<
2
3
−
a
2
!
+
3
3
−
a
3
!
+
.
.
.
+
n
3
−
a
n
!
<
b
b-\frac{c}{(n-2)!} < \frac{2^3-a}{2!}+\frac{3^3-a}{3!}+...+\frac{n^3-a}{n!}<b
b
−
(
n
−
2
)!
c
<
2
!
2
3
−
a
+
3
!
3
3
−
a
+
...
+
n
!
n
3
−
a
<
b
(V Senderov, NB Vassiliev)
algebra
inequalities