MathDB
Problems
Contests
International Contests
Tournament Of Towns
1997 Tournament Of Towns
(558) 3
(558) 3
Part of
1997 Tournament Of Towns
Problems
(1)
TOT 558 1997 Autumn S O3 xy(x -y) + yz(y-z) + zx(z-x) = 6
Source:
9/11/2024
Prove that the equation
x
y
(
x
−
y
)
+
y
z
(
y
−
z
)
+
z
x
(
z
−
x
)
=
6
xy(x -y) + yz(y-z) + zx(z-x) = 6
x
y
(
x
−
y
)
+
yz
(
y
−
z
)
+
z
x
(
z
−
x
)
=
6
has infinitely many solutions in integers
x
,
y
x, y
x
,
y
and
z
z
z
.(N Vassiliev)
number theory
diophantine
Diophantine equation