MathDB
Problems
Contests
International Contests
Tuymaada Olympiad
2004 Tuymaada Olympiad
1
1
Part of
2004 Tuymaada Olympiad
Problems
(1)
A sequence (a_n) and a polynomial P such that a_m+a_n=P(mn)?
Source: Tuymaada 2004, day 1, problem 1. - Author : A. Golovanov.
5/25/2007
Do there exist a sequence
a
1
,
a
2
,
a
3
,
…
a_{1}, a_{2}, a_{3}, \ldots
a
1
,
a
2
,
a
3
,
…
of real numbers and a non-constant polynomial
P
(
x
)
P(x)
P
(
x
)
such that
a
m
+
a
n
=
P
(
m
n
)
a_{m}+a_{n}=P(mn)
a
m
+
a
n
=
P
(
mn
)
for every positive integral
m
m
m
and
n
?
n?
n
?
Proposed by A. Golovanov
algebra
polynomial
calculus
integration
algebra proposed