For every positive integer n determine the highest value C(n), such that for every n-tuple (a1,a2,…,an) of pairwise distinct integers
(n \plus{} 1)\sum_{j \equal{} 1}^n a_j^2 \minus{} \left(\sum_{j \equal{} 1}^n a_j\right)^2\geq C(n) inequalities unsolvedinequalities