Let a0,a1,...,a2002 be real numbers.
a) Show that the smallest of the values ak(1−a2002−k) (0≤k≤2002) the following applies:
it is smaller or equal to 1/4.
b) Does this statement always apply to the smallest of the values ak(1−a2003−k) (1≤k≤2002) ?
c) Show for positive real numbers a0,a1,...,a2002 :
the smallest of the values ak(1−a2003−k) (1≤k≤2002) is less than or equal to 1/4. algebrainequalitiesProduct