Let n be a positive integer such that n≥2. Let x1,x2,...,xn be n distinct positive integers and Si sum of all numbers between them except xi for i=1,2,...,n. Let f(x1,x2,...,xn)=x1+x2+...+xnGCD(x1,S1)+GCD(x2,S2)+...+GCD(xn,Sn).
Determine maximal value of f(x1,x2,...,xn), while (x1,x2,...,xn) is an element of set which consists from all n-tuples of distinct positive integers. least common multiplemaximizationnumber theory