MathDB
Problems
Contests
National and Regional Contests
Bosnia Herzegovina Contests
JBMO TST - Bosnia and Herzegovina
2021 Bosnia and Herzegovina Junior BMO TST
2
2
Part of
2021 Bosnia and Herzegovina Junior BMO TST
Problems
(1)
p^2 +qt =(p + t)^n, p^2 + qr = t^4, diophantine with primes
Source: 2021 JBMO TST Bosnia and Herzegovina P2
10/7/2022
Let
p
,
q
,
r
p, q, r
p
,
q
,
r
be prime numbers and
t
,
n
t, n
t
,
n
be natural numbers such that
p
2
+
q
t
=
(
p
+
t
)
n
p^2 +qt =(p + t)^n
p
2
+
qt
=
(
p
+
t
)
n
and
p
2
+
q
r
=
t
4
p^2 + qr = t^4
p
2
+
q
r
=
t
4
. a) Show that
n
<
3
n < 3
n
<
3
. b) Determine all the numbers
p
,
q
,
r
,
t
,
n
p, q, r, t, n
p
,
q
,
r
,
t
,
n
that satisfy the given conditions.
number theory
Diophantine equation
diophantine