In the diagram, OBi is parallel and equal in length to AiAi+1 for i=1, 2, 3, and 4 (A5=A1). Show that the area of B1B2B3B4 is twice that of A1A2A3A4.[asy]
unitsize(1 cm);pair O;
pair[] A, B;O = (0,0);
A[1] = (0.5,-3);
A[2] = (2,0);
A[3] = (-0.2,0.5);
A[4] = (-1,0);
B[1] = A[2] - A[1];
B[2] = A[3] - A[2];
B[3] = A[4] - A[3];
B[4] = A[1] - A[4];draw(A[1]--A[2]--A[3]--A[4]--cycle);
draw(B[1]--B[2]--B[3]--B[4]--cycle);
draw(O--B[1]);
draw(O--B[2]);
draw(O--B[3]);
draw(O--B[4]);label("A1", A[1], S);
label("A2", A[2], E);
label("A3", A[3], N);
label("A4", A[4], W);
label("B1", B[1], NE);
label("B2", B[2], W);
label("B3", B[3], SW);
label("B4", B[4], S);
label("O", O, E);
[/asy] geometrymodular arithmeticgeometry proposed