Let r1, r2, …, rm be a given set of m positive rational numbers such that ∑k=1mrk=1. Define the function f by f(n)=n−∑k=1m[rkn] for each positive integer n. Determine the minimum and maximum values of f(n). Here [x] denotes the greatest integer less than or equal to x. functionLaTeXnumber theory unsolvednumber theory