MathDB
Problems
Contests
National and Regional Contests
Canada Contests
Canadian Mathematical Olympiad Qualification Repechage
2018 Canadian Mathematical Olympiad Qualification
6
6
Part of
2018 Canadian Mathematical Olympiad Qualification
Problems
(1)
Sum minus product in Z_3^n is zero
Source: Canada Repêchage 2018/6
4/9/2018
Let
n
≥
2
n \geq 2
n
≥
2
be a positive integer. Determine the number of
n
n
n
-tuples
(
x
1
,
x
2
,
…
,
x
n
)
(x_1, x_2, \ldots, x_n)
(
x
1
,
x
2
,
…
,
x
n
)
such that
x
k
∈
{
0
,
1
,
2
}
x_k \in \{0, 1, 2\}
x
k
∈
{
0
,
1
,
2
}
for
1
≤
k
≤
n
1 \leq k \leq n
1
≤
k
≤
n
and
∑
k
=
1
n
x
k
−
∏
k
=
1
n
x
k
\sum_{k = 1}^n x_k - \prod_{k = 1}^n x_k
∑
k
=
1
n
x
k
−
∏
k
=
1
n
x
k
is divisible by
3
3
3
.
combinatorics