MathDB
Problems
Contests
National and Regional Contests
Canada Contests
Canadian Open Math Challenge
2017 Canadian Open Math Challenge
A2
A2
Part of
2017 Canadian Open Math Challenge
Problems
(1)
2017 COMC A2
Source:
10/12/2018
Source: 2017 Canadian Open Math Challenge, Problem A2 —-- An equilateral triangle has sides of length
4
4
4
cm. At each vertex, a circle with radius
2
2
2
cm is drawn, as shown in the figure below. The total area of the shaded regions of the three circles is
a
⋅
π
cm
2
a\cdot \pi \text{cm}^2
a
⋅
π
cm
2
. Determine
a
a
a
.[asy] size(2.5cm); draw(circle((0,2sqrt(3)/3),1)); draw(circle((1,-sqrt(3)/3),1)); draw(circle((-1,-sqrt(3)/3),1)); draw((0,2sqrt(3)/3) -- arc((0,2sqrt(3)/3), 1, 240, 300) -- cycle); fill(((0,2sqrt(3)/3) -- arc((0,2sqrt(3)/3), 1, 240, 300) -- cycle),mediumgray); draw((1,-sqrt(3)/3) -- arc((1,-sqrt(3)/3), 1, 180, 120) -- cycle); fill(((1,-sqrt(3)/3) -- arc((1,-sqrt(3)/3), 1, 180, 120) -- cycle),mediumgray); draw((-1,-sqrt(3)/3) -- arc((-1,-sqrt(3)/3), 1, 0, 60) -- cycle); fill(((-1,-sqrt(3)/3) -- arc((-1,-sqrt(3)/3), 1, 0, 60) -- cycle),mediumgray); [/asy]
Comc
2017 COMC