MathDB
Problems
Contests
National and Regional Contests
Canada Contests
Gauss
1999 Gauss
20
20
Part of
1999 Gauss
Problems
(1)
1999 Gauss (7) #20
Source:
7/6/2011
The first 9 positive odd integers are placed in the magic square so that the sum of the numbers in each row, column and diagonal are equal. Find the value of
A
+
E
A + E
A
+
E
. \begin{tabular}{|c|c|c|}\hline A & 1 & B \\ \hline 5 & C & 13\\ \hline D & E & 3 \\ \hline\end{tabular}
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
a
n
>
32
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
a
n
>
28
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
a
n
>
26
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
a
n
>
24
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
E
)
<
/
s
p
a
n
>
16
<span class='latex-bold'>(A)</span>\ 32 \qquad <span class='latex-bold'>(B)</span>\ 28 \qquad <span class='latex-bold'>(C)</span>\ 26 \qquad <span class='latex-bold'>(D)</span>\ 24 \qquad <span class='latex-bold'>(E)</span>\ 16
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
an
>
32
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
an
>
28
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
an
>
26
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
an
>
24
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
E
)
<
/
s
p
an
>
16
Gauss