MathDB
Problems
Contests
National and Regional Contests
Chile Contests
Chile National Olympiad
1996 Chile National Olympiad
7
7
Part of
1996 Chile National Olympiad
Problems
(1)
sum 1/1x4+1/4x7+1/7x10+1/1995x1996 , 1996 Chile NMO p7
Source:
9/5/2022
(a) Let
a
,
b
,
c
,
d
a, b, c, d
a
,
b
,
c
,
d
be integers such that
a
d
≠
b
c
ad\ne bc
a
d
=
b
c
. Show that is always possible to write the fraction
1
(
a
x
+
b
)
(
c
x
+
d
)
\frac{1}{(ax+b)(cx+d)}
(
a
x
+
b
)
(
c
x
+
d
)
1
in the form
r
a
x
+
b
+
s
c
x
+
d
\frac{r}{ax+b}+\frac{s}{cx+d}
a
x
+
b
r
+
c
x
+
d
s
(b) Find the sum
1
1
⋅
4
+
1
4
⋅
7
+
1
7
⋅
10
+
.
.
.
+
1
1995
⋅
1996
\frac{1}{1 \cdot 4}+\frac{1}{4 \cdot 7}+\frac{1}{7 \cdot 10}+...+\frac{1}{1995 \cdot 1996}
1
⋅
4
1
+
4
⋅
7
1
+
7
⋅
10
1
+
...
+
1995
⋅
1996
1
algebra