MathDB
Problems
Contests
National and Regional Contests
Chile Contests
Chile National Olympiad
2005 Chile National Olympiad
5
5
Part of
2005 Chile National Olympiad
Problems
(1)
g(nm) = g(n) + g(m) + g(n)g(m), g(n^2 + 1) = (g(n) + 1)^2, g(1) = 0
Source: Chile Finals 2005 L2 p5
10/3/2022
Compute
g
(
2005
)
g(2005)
g
(
2005
)
where
g
g
g
is a function defined on the natural numbers that has the following properties: i)
g
(
1
)
=
0
g(1) = 0
g
(
1
)
=
0
ii)
g
(
n
m
)
=
g
(
n
)
+
g
(
m
)
+
g
(
n
)
g
(
m
)
g(nm) = g(n) + g(m) + g(n)g(m)
g
(
nm
)
=
g
(
n
)
+
g
(
m
)
+
g
(
n
)
g
(
m
)
for any pair of integers
n
,
m
n, m
n
,
m
. iii)
g
(
n
2
+
1
)
=
(
g
(
n
)
+
1
)
2
g(n^2 + 1) = (g(n) + 1)^2
g
(
n
2
+
1
)
=
(
g
(
n
)
+
1
)
2
for every integer
n
n
n
.
number theory
functional