MathDB
Problems
Contests
National and Regional Contests
Chile Contests
Chile National Olympiad
2013 Chile National Olympiad
2013 Chile National Olympiad
Part of
Chile National Olympiad
Subcontests
(6)
4
1
Hide problems
nf(2n + 1) = (2n + 1)(f(n) + n) , f(2n) = 2f(n)
Consider a function f defined on the positive integers that meets the following conditions:
f
(
1
)
=
1
,
f
(
2
n
)
=
2
f
(
n
)
,
n
f
(
2
n
+
1
)
=
(
2
n
+
1
)
(
f
(
n
)
+
n
)
f(1) = 1 \, , \,\, f(2n) = 2f(n) \, , \,\, nf(2n + 1) = (2n + 1)(f(n) + n)
f
(
1
)
=
1
,
f
(
2
n
)
=
2
f
(
n
)
,
n
f
(
2
n
+
1
)
=
(
2
n
+
1
)
(
f
(
n
)
+
n
)
for all
n
≥
1
n \ge 1
n
≥
1
. a) Prove that
f
(
n
)
f(n)
f
(
n
)
is an integer for all
n
n
n
. b) Find all positive integers
m
m
m
less than
2013
2013
2013
that satisfy the equation
f
(
m
)
=
2
m
f(m) = 2m
f
(
m
)
=
2
m
.
6
1
Hide problems
Juan must pay 4 bills and goes to an ATM
Juan must pay
4
4
4
bills. He goes to an ATM, but doesn't remember the amount of the bills. Just know that a) Each account is a multiple of
1
,
000
1,000
1
,
000
and is at least
4
,
000
4,000
4
,
000
. b) The accounts total 2
00
,
000
00, 000
00
,
000
. What is the least number of times Juan must use the ATM to make sure he can pay the bills with exact change without any excess money? The cashier has banknotes of
2
,
000
2, 000
2
,
000
,
5
,
000
5, 000
5
,
000
,
10
,
000
10, 000
10
,
000
, and
20
,
000
20,000
20
,
000
. Juan can decide how much money he asks the cashier each time, but you cannot decide how many bills of each type to give to the cashier.
3
1
Hide problems
exists i with sum a_i_>0 if a_1 + a_2 + ... + a_n > 0
Given a finite sequence of real numbers
a
1
,
a
2
,
.
.
.
,
a
n
a_1,a_2,...,a_n
a
1
,
a
2
,
...
,
a
n
such that
a
1
+
a
2
+
.
.
.
+
a
n
>
0.
a_1 + a_2 + ... + a_n > 0.
a
1
+
a
2
+
...
+
a
n
>
0.
Prove that there is at least one index
i
i
i
such that
a
i
>
0
,
a
i
+
a
i
+
1
>
0
,
.
.
.
,
a
i
+
a
i
+
1
+
.
.
.
+
a
n
>
0.
a_i > 0, a_i + a_{i+1} > 0, ..., a_i + a_{i+1} + ...+ a_n > 0.
a
i
>
0
,
a
i
+
a
i
+
1
>
0
,
...
,
a
i
+
a
i
+
1
+
...
+
a
n
>
0.
2
1
Hide problems
Hannibal and Clarice are still at a barbecue
Hannibal and Clarice are still at a barbecue and there are three anticuchos left, each of which it has
10
10
10
pieces. Of the
30
30
30
total pieces, there are
29
29
29
chicken and one meat, the which is at the bottom of one of the anticuchos. To decide who to stay with the piece of meat, they decide to play the following game: they alternately take out a piece of one of the anticuchos (they can take only the outer pieces) and whoever wins the game manages to remove the piece of meat. Clarice decides if she starts or Hannibal starts. What should she decide?
1
1
Hide problems
sum of 5-digit numbers with digits 1,2,5
Find the sum of all
5
5
5
-digit positive integers that they have only the digits
1
,
2
1, 2
1
,
2
, and
5
5
5
, none repeated more than three consecutive times.
5
1
Hide problems
intersection of a conical surface and a plane is an ellipse
A conical surface
C
C
C
is cut by a plane
T
T
T
as shown in the figure on the back of this sheet. Show that
C
∩
T
C \cap T
C
∩
T
is an ellipse. You can use as an aid the fact that if you consider the two spheres tangent to
C
C
C
and
T
T
T
as shown in the figure, they intersect
T
T
T
in the bulbs.[asy] // calculate intersection of line and plane // p = point on line // d = direction of line // q = point in plane // n = normal to plane triple lineintersectplan(triple p, triple d, triple q, triple n) { return (p + dot(n,q - p)/dot(n,d)*d); }// projection of point A onto line BC triple projectionofpointontoline(triple A, triple B, triple C) { return lineintersectplan(B, B - C, A, B - C); }// calculate area of space triangle with vertices A, B, and C real trianglearea(triple A, triple B, triple C) { return abs(cross(A - C, B - C)/2); }// calculate incentre of space triangle ABC triple triangleincentre(triple A, triple B, triple C) { return (abs(B - C) * A + abs(C - A) * B + abs(A - B) * C)/(abs(B - C) + abs(C - A) + abs(A - B)); }// calculate inradius of space triangle ABC real triangleinradius(triple A, triple B, triple C) { return 2*trianglearea(A,B,C)/(abs(B - C) + abs(C - A) + abs(A - B)); }// calculate excentre of space triangle ABC triple triangleexcentre(triple A, triple B, triple C) { return (-abs(B - C) * A + abs(C - A) * B + abs(A - B) * C)/(-abs(B - C) + abs(C - A) + abs(A - B)); }// calculate exradius of space triangle ABC real triangleexradius(triple A, triple B, triple C) { return 2*trianglearea(A,B,C)/(-abs(B - C) + abs(C - A) + abs(A - B)); }unitsize(2 cm);pair project (triple A, real t) { return((A.x, A.y*Sin(t) + A.z*Cos(t))); }real alpha, beta, theta, t; real coneradius = 1, coneheight = 3; real a, b, c; real[] m, r; triple A, B, V; triple ellipsecenter, ellipsex, ellipsey; triple[] F, O, P, R, W; path[] ellipse, spherering;theta = 15; V = (0,0,-coneheight);m[1] = sqrt(Cos(theta)^2*coneheight^2 - Sin(theta)^2*coneradius^2)/coneradius; m[2] = -m[1]; alpha = -aTan(Sin(theta)/m[1]); beta = -aTan(Sin(theta)/m[2]) + 180; A = (coneradius*Cos(alpha), coneradius*Sin(alpha), 0); B = (coneradius*Cos(beta), coneradius*Sin(beta), 0);W[1] = interp(V,(coneradius,0,0),0.6); W[2] = interp(V,(-coneradius,0,0),0.4); O[1] = triangleexcentre(V,W[1],W[2]); O[2] = triangleincentre(V,W[1],W[2]); r[1] = triangleexradius(V,W[1],W[2]); r[2] = triangleinradius(V,W[1],W[2]); F[1] = projectionofpointontoline(O[1],W[1],W[2]); F[2] = projectionofpointontoline(O[2],W[1],W[2]);P[1] = O[1] - (0,0,r[1]*coneradius/sqrt(coneradius^2 + coneheight^2)); P[2] = O[2] - (0,0,r[2]*coneradius/sqrt(coneradius^2 + coneheight^2)); spherering[11] = shift(project(P[1],theta))*yscale(Sin(theta))*arc((0,0),r[1]*coneheight/sqrt(coneradius^2 + coneheight^2),alpha,beta); spherering[12] = shift(project(P[1],theta))*yscale(Sin(theta))*arc((0,0),r[1]*coneheight/sqrt(coneradius^2 + coneheight^2),beta,alpha + 360); spherering[21] = shift(project(P[2],theta))*yscale(Sin(theta))*arc((0,0),r[2]*coneheight/sqrt(coneradius^2 + coneheight^2),alpha,beta); spherering[22] = shift(project(P[2],theta))*yscale(Sin(theta))*arc((0,0),r[2]*coneheight/sqrt(coneradius^2 + coneheight^2),beta,alpha + 360);ellipsecenter = (W[1] + W[2])/2; a = abs(W[1] - ellipsecenter); c = abs(F[1] - ellipsecenter); b = sqrt(a^2 - c^2); ellipsex = (W[1] - W[2])/abs(W[1] - W[2]); ellipsey = (0,1,0);ellipse[1] = project(ellipsecenter + a*ellipsex, theta);for (t = 0; t <= 180; t = t + 5) { ellipse[1] = ellipse[1]--project(ellipsecenter + a*Cos(t)*ellipsex + b*Sin(t)*ellipsey, theta); }ellipse[2] = project(ellipsecenter - a*ellipsex, theta);for (t = 180; t <= 360; t = t + 5) { ellipse[2] = ellipse[2]--project(ellipsecenter + a*Cos(t)*ellipsex + b*Sin(t)*ellipsey, theta); }R[1] = ellipsecenter + 1*ellipsex + ellipsey; R[2] = ellipsecenter - 1.2*ellipsex + ellipsey; R[3] = ellipsecenter - 1*ellipsex - ellipsey; R[4] = ellipsecenter + 1.2*ellipsex - ellipsey;fill(ellipse[1]--ellipse[2]--cycle, gray(0.9)); draw(yscale(Sin(theta))*Circle((0,0),coneradius)); draw(project(V,theta)--project(A,theta)); draw(project(V,theta)--project(B,theta)); draw(Circle(project(O[1],theta),r[1])); draw(Circle(project(O[2],theta),r[2])); draw(spherering[11], dashed); draw(spherering[12]); draw(spherering[21], dashed); draw(spherering[22]); draw(ellipse[1], dashed); draw(ellipse[2]); draw(project(R[1],theta)--interp(project(R[1],theta),project(R[2],theta),0.13)); draw(interp(project(R[1],theta),project(R[2],theta),0.13)--interp(project(R[1],theta),project(R[2],theta),0.76), dashed); draw(interp(project(R[1],theta),project(R[2],theta),0.76)--project(R[2],theta)); draw(project(R[2],theta)--project(R[3],theta)--project(R[4],theta)--project(R[1],theta));label("
C
C
C
", (-1,0.3)); label("
T
T
T
", (1.2,-0.8)); dot(project(F[1],theta)); dot(project(F[2],theta)); //dot("
F
1
F_1
F
1
", project(F[1],theta)); //dot("
F
2
F_2
F
2
", project(F[2],theta)); //dot("
O
1
O_1
O
1
", project(O[1],theta)); //dot("
O
2
O_2
O
2
", project(O[2],theta)); //dot("
P
1
P_1
P
1
", project(P[1],theta)); //dot("
V
V
V
", project(V,theta)); //dot("
W
1
W_1
W
1
", project(W[1],theta)); //dot("
W
2
W_2
W
2
", project(W[2],theta)); [/asy]