MathDB
Problems
Contests
National and Regional Contests
China Contests
(China) National High School Mathematics League
2006 China Second Round Olympiad
13
13
Part of
2006 China Second Round Olympiad
Problems
(1)
2006 China Second Round Olympiad Test 1 #13
Source:
9/28/2014
Given an integer
n
≥
2
n\ge 2
n
≥
2
, define
M
0
(
x
0
,
y
0
)
M_0 (x_0, y_0)
M
0
(
x
0
,
y
0
)
to be an intersection point of the parabola
y
2
=
n
x
−
1
y^2=nx-1
y
2
=
n
x
−
1
and the line
y
=
x
y=x
y
=
x
. Prove that for any positive integer
m
m
m
, there exists an integer
k
≥
2
k\ge 2
k
≥
2
such that
(
x
0
m
,
y
0
m
)
(x^m_0, y^m_0)
(
x
0
m
,
y
0
m
)
is an intersection point of
y
2
=
m
x
−
1
y^2=mx-1
y
2
=
m
x
−
1
and the line
y
=
x
y=x
y
=
x
.
conics
parabola