MathDB
Problems
Contests
National and Regional Contests
China Contests
(China) National High School Mathematics League
2006 China Second Round Olympiad
2
2
Part of
2006 China Second Round Olympiad
Problems
(2)
a recursive sequence concerning Fibonacci
Source: China second round 2006 p2
3/10/2012
Let
x
,
y
x,y
x
,
y
be real numbers. Define a sequence
{
a
n
}
\{a_n \}
{
a
n
}
through the recursive formula
a
0
=
x
,
a
1
=
y
,
a
n
+
1
=
a
n
a
n
−
1
+
1
a
n
+
a
n
−
1
,
a_0=x,a_1=y,a_{n+1}=\frac{a_na_{n-1}+1}{a_n+a_{n-1}},
a
0
=
x
,
a
1
=
y
,
a
n
+
1
=
a
n
+
a
n
−
1
a
n
a
n
−
1
+
1
,
Find
a
n
a_n
a
n
.
algebra unsolved
algebra
2006 China Second Round Olympiad Test 1 #2
Source:
9/28/2014
Suppose
l
o
g
x
(
2
x
2
+
x
−
1
)
>
l
o
g
x
2
−
1
log_x (2x^2+x-1)>log_x 2-1
l
o
g
x
(
2
x
2
+
x
−
1
)
>
l
o
g
x
2
−
1
. Then the range of
x
x
x
is
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
a
n
>
1
2
<
x
<
1
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
a
n
>
x
>
1
2
and
x
≠
1
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
a
n
>
x
>
1
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
a
n
>
0
<
x
<
1
{ <span class='latex-bold'>(A)</span>\ \frac{1}{2}<x<1\qquad<span class='latex-bold'>(B)</span>\ x>\frac{1}{2} \text{and} x \not= 1\qquad<span class='latex-bold'>(C)</span>\ x>1\qquad<span class='latex-bold'>(D)</span>}\ 0<x<1\qquad
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
an
>
2
1
<
x
<
1
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
B
)
<
/
s
p
an
>
x
>
2
1
and
x
=
1
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
C
)
<
/
s
p
an
>
x
>
1
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
D
)
<
/
s
p
an
>
0
<
x
<
1
logarithms