MathDB
Problems
Contests
National and Regional Contests
China Contests
(China) National High School Mathematics League
2014 China Second Round Olympiad
4
4
Part of
2014 China Second Round Olympiad
Problems
(1)
2014 China Second Round Olympiad Second Part Problem 4
Source: 2014 China Second Round Olympiad
8/5/2015
Let
x
1
,
x
2
,
…
,
x
2014
x_1,x_2,\dots,x_{2014}
x
1
,
x
2
,
…
,
x
2014
be integers among which no two are congurent modulo
2014
2014
2014
. Let
y
1
,
y
2
,
…
,
y
2014
y_1,y_2,\dots,y_{2014}
y
1
,
y
2
,
…
,
y
2014
be integers among which no two are congurent modulo
2014
2014
2014
. Prove that one can rearrange
y
1
,
y
2
,
…
,
y
2014
y_1,y_2,\dots,y_{2014}
y
1
,
y
2
,
…
,
y
2014
to
z
1
,
z
2
,
…
,
z
2014
z_1,z_2,\dots,z_{2014}
z
1
,
z
2
,
…
,
z
2014
, so that among
x
1
+
z
1
,
x
2
+
z
2
,
…
,
x
2014
+
z
2014
x_1+z_1,x_2+z_2,\dots,x_{2014}+z_{2014}
x
1
+
z
1
,
x
2
+
z
2
,
…
,
x
2014
+
z
2014
no two are congurent modulo
4028
4028
4028
.
number theory